• schedule
  • resources
  • Discord
  • Gradescope
Previous module:
schedule

  • User guide
  • 1. Some set theory
  • 2. Metric spaces
  • 3. Open sets
  • 4. Basis, subbasis, subspace
  • 5. Closed sets
  • 6. Continuous functions
  • 7. Connectedness
  • 8. Path connectedness
  • 9. Separation axioms
  • 10. Urysohn lemma
  • 11. Tietze extension theorem
  • 12. Urysohn metrization theorem
  • 13. Metrization of manifolds
  • 14. Compact spaces
  • 15. Heine-Borel theorem
  • 16. Compact metric spaces
  • 17. Tychonoff theorem
  • 18. Compactification
  • 19. Quotient spaces

12. Urysohn metrization theorem

Notes

  • Complete lecture notes
  • Blank lecture notes

Videos

Part 1 (page 88)

Part 2 (page 89)

Part 3 (pages 90-92)

Part 4 (page 93-94)

Part 5 (page 95)

Part 6 (page 96)

Page links

  • Page 88: Introduction.
  • Page 89: Embeddings of topological spaces.
  • Page 90: Product topology.
  • Page 91: Continuous functions on product spaces.
  • Page 92: Products of metrizable spaces.
  • Page 93: Separating families of functions.
  • Page 94: Embedding lemma.
  • Page 95: Proof of the Urysohn metrization theorem.
  • Page 96: Nagata-Smirnov metrization theorem.

Previous section:
11. Tietze extension theorem
Next section:
13. Metrization of manifolds
CC-BY-SA Icon

All the materials on this site are licensed under a Creative Commons BY-NC-SA 4.0 International license.