• schedule
  • resources
  • Discord
  • Gradescope
Previous module:
schedule

  • User guide
  • 1. Some set theory
  • 2. Metric spaces
  • 3. Open sets
  • 4. Basis, subbasis, subspace
  • 5. Closed sets
  • 6. Continuous functions
  • 7. Connectedness
  • 8. Path connectedness
  • 9. Separation axioms
  • 10. Urysohn lemma
  • 11. Tietze extension theorem
  • 12. Urysohn metrization theorem
  • 13. Metrization of manifolds
  • 14. Compact spaces
  • 15. Heine-Borel theorem
  • 16. Compact metric spaces
  • 17. Tychonoff theorem
  • 18. Compactification
  • 19. Quotient spaces

3. Open sets

Notes

  • Complete lecture notes
  • Blank lecture notes

Videos

Part 1 (page 26)

Part 2 (pages 27-28)

Part 3 (pages 29-31)

Part 4 (pages 32-33)

Page links

  • Page 26: Review: metric spaces and continuous functions.
  • Page 27: Equivalent metrics and continuous functions.
  • Page 28: Examples of equivalent and non-equivalent metrics.
  • Page 29: Open sets in a metric space.
  • Page 30: Open sets and equivalent metrics. Properties of open sets.
  • Page 31: Open sets and continuous functions.
  • Page 32: Topological spaces: definition and first examples.
  • Page 33: Metrizable and non-metrizable spaces.

Previous section:
2. Metric spaces
Next section:
4. Basis, subbasis, subspace
CC-BY-SA Icon

All the materials on this site are licensed under a Creative Commons BY-NC-SA 4.0 International license.